
Performance optimisation at UTPerformance optimisation at UT
Victor Eijkhout

ICL, University of Tennessee, Knoxville
TOPS scidac
25/26 January 2002
Livermore CA



Topics of optimisationTopics of optimisation
• Matrix structure detection



Topics of optimisationTopics of optimisation
• Matrix structure detection

• A2x kernel



Topics of optimisationTopics of optimisation
• Matrix structure detection

• A2x kernel

• Multigrid smoothers



Matrix structure detectionMatrix structure detection
Observations:

• Certain parallel preconditioners imply physical
domain partitioning (Block Jacobi, but not
multicolour ILU)



Matrix structure detectionMatrix structure detection
Observations:

• Certain parallel preconditioners imply physical
domain partitioning (Block Jacobi, but not
multicolour ILU)

• ’Natural’ domain partitioning often
acknowledges partitioning of the physics.



Matrix structure detectionMatrix structure detection
Observations:

• Certain parallel preconditioners imply physical
domain partitioning (Block Jacobi, but not
multicolour ILU)

• ’Natural’ domain partitioning often
acknowledges partitioning of the physics.

⇒ Let partioning for parallel processing
acknowledge the same structure.



Structure testStructure test
Re-engineering of level sets:



Structure testStructure test
Re-engineering of level sets:

• first point connects to first point of next set



Structure testStructure test
Re-engineering of level sets:

• first point connects to first point of next set

• last point connects to last point of next set



Structure testStructure test
Re-engineering of level sets:

• first point connects to first point of next set

• last point connects to last point of next set

• first point does not connect to last point of
another set



Structure testStructure test
Re-engineering of level sets:

• first point connects to first point of next set

• last point connects to last point of next set

• first point does not connect to last point of
another set



Structure detection exampleStructure detection example

0 500 1000 1500

0

500

1000

1500

nz = 59384



State of the workState of the work
Parallel implementation in Petsc
can be made more efficient by adding new Petsc
primitives



State of the workState of the work
Parallel implementation in Petsc
can be made more efficient by adding new Petsc
primitives

Small number of tests done

0 50 100 150 200 250 300 350
10−10

10−8

10−6

10−4

10−2

100

102

more to be done

comparison with Chaco &c.



A
2
x kernelA2x kernel

(work for TSI scidac)

• Matrix is direct product of block diagonal and
tridiagonal



A
2
x kernelA2x kernel

(work for TSI scidac)

• Matrix is direct product of block diagonal and
tridiagonal

• ADI preconditioner ⇒ solve many small dense
systems



A
2
x kernelA2x kernel

(work for TSI scidac)

• Matrix is direct product of block diagonal and
tridiagonal

• ADI preconditioner ⇒ solve many small dense
systems

• Solution of small (30–3k) dense systems by
iterative method.
well-conditioned, so low number of iterations.



Iterative solutionIterative solution
• Formulate as left-preconditioned method

A = (D − E) ≡ D(I − N), M−1 = (I + N)D−1

⇒ M−1A = (I − N2)



Iterative solutionIterative solution
• Formulate as left-preconditioned method

A = (D − E) ≡ D(I − N), M−1 = (I + N)D−1

⇒ M−1A = (I − N2)

• depends on efficiency of y = N2x

can we beat twice-gemv?



Efficiency of A
2
x kernelEfficiency of A2x kernel

Why we can beat twice-gemv:



Efficiency of A
2
x kernelEfficiency of A2x kernel

Why we can beat twice-gemv:

• Reuse of matrix



Efficiency of A
2
x kernelEfficiency of A2x kernel

Why we can beat twice-gemv:

• Reuse of matrix

• Possible elimination of intermediate result



Efficiency of A
2
x kernelEfficiency of A2x kernel

Why we can beat twice-gemv:

• Reuse of matrix

• Possible elimination of intermediate result

• Atlas gemv is optimised for out-of-cache; we
possibly operate in-cache



Recursive approach to out-of-cache
case

Recursive approach to out-of-cache
case
Let

A =

(

A11 A12

A21 A22

)

then

y1 = A11(A11x1 + A12x2) + A12(A21x1 + A22x2)

y2 = A21(A11x1 + A12x2) + A22(A21x1 + A22x2)



Recursive approach continuedRecursive approach continued
Introduce t = Ax and localise application of A11,
A22:

t1

t2

}

=

{

A12x2

A21x1

y1 = A11t̂1, t̂1 = A11x1 + t1

y2 = A22t̂2, t̂2 = A22x2 + t2

y1

y2

}

+ =

{

A12t̂2

A21t̂1



New kernel for recursive A
2
xNew kernel for recursive A2x

Instructions involving reuse:

y1 = A11t̂1, t̂1 = A11x1 + t1

y2 = A22t̂2, t̂2 = A22x2 + t2



New kernel for recursive A
2
xNew kernel for recursive A2x

Instructions involving reuse:

y1 = A11t̂1, t̂1 = A11x1 + t1

y2 = A22t̂2, t̂2 = A22x2 + t2

Double matrix vector product
[y,s]=m2v(A,t,x):

s = Ax + t, y = As



ExampleExample
On ev6:

32 68 92 128

blas 356 415 395 389

unroll4 439 450 432 322



ExampleExample
On ev6:

32 68 92 128

blas 356 415 395 389

unroll4 439 450 432 322

64 96

unroll4 386 399



Multigrid smoothersMultigrid smoothers
• Scalar optimisation (Atlas techniques); with

Jun Ding.



Multigrid smoothersMultigrid smoothers
• Scalar optimisation (Atlas techniques); with

Jun Ding.

• Mathematical optimisation

construct CG iterates from GS iterates

does this pay?

other spectrum-adaptive method?



SummarySummary
• Optimisation of dense and sparse kernels

• Optimisation: uni-processor and distributed

• Optimisation through Intelligent adaptation


